

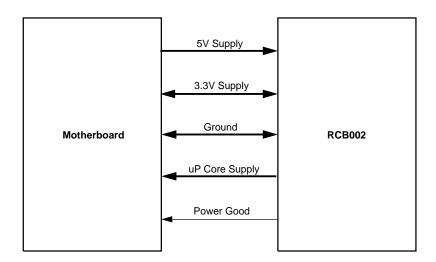
RCB002

Voltage Regulator Module (VRM) for Pentium[®] P55C and K6™ Processors

Features

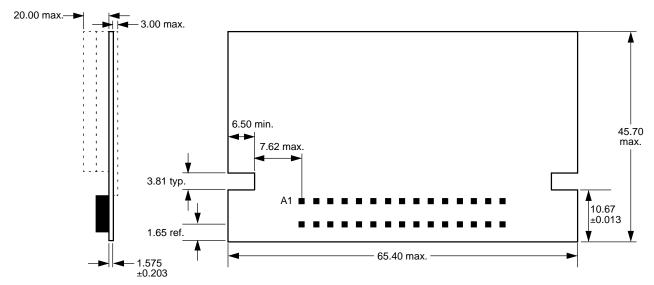
- Fixed 2.8V, 2.9V or 3.2V output from 5V supply
- Maximum output current 7.5A for RCB002-8
- Maximum output current 10A for RCB002-10
- Typical efficiencies > 80%
- · Short circuit protection
- · Power Good output
- · Excellent transient response
- Meets Intel's Pentium P55C and AMD's K6 power specifications

Applications

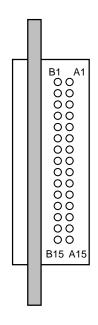

- Pentium and K6 motherboard 30-pin VRM module
- Add-in power supply upgrade for P55C and K6 CPUs
- · Flexible motherboard designs

Description

The RCB002 VRM module is a DC-DC voltage regulator module designed to deliver the processor core voltage required by the P55C and K6 microprocessors. It offers board designers the flexibility to support the P55C and K6 processors with a modular add-in power supply. The RCB002 uses a proprietary Fairchild programmable DC-DC controller IC to deliver a precise output voltage to the CPU core without the need for external precision resistors. The result is a voltage regulator module with a minimum number of components to achieve high reliability at a competitive cost.


The RCB002-8 can deliver 2.8V or 2.9V (factory preset) of extremely well regulated voltage at 6A of continuous current. This voltage can be used to address the P55C and the 166/200MHz K6. The RCB002-10 delivers 3.2V at 10A for the 233MHz K6. In addition, the Power Good open collector outputs a logic LOW when an out-of-tolerance voltage is detected at the VRM output. Other features include high efficiency, short circuit protection, and low package weight.

Block Diagram



RCB002 PRODUCT SPECIFICATION

Mechanical Dimensions (mm) – Viewed from connector side

Pin Orientation - Top View (Socket: AMPMOD2 532956-5 or equivalent)

Table 1. VRM Connector Pin Definitions

Pin#	Row A	Row B	
1	GND	GND	
2	GND	GND	
3	V12 ¹	VI/O ¹	
4	V _{I/O} ¹	V _I /O ¹	
5	V3 ¹	V3 ¹	
6	V3 ¹	V3 ¹	
7	VCORE	VCORE	
8	VCORE	VCORE	
9	GND	VCORE	
10	VCORE	VCORE	
11	PWRGD	UPVRM# ¹	
12	SENSE ¹	DISABLE ¹	
13	GND	GND	
14	V5	V5	
15	V5	V5	

Note:

1. Not used by VRM module

PRODUCT SPECIFICATION RCB002

VRM Connector Pin Reference

Pin Description	Input/ Output	Function
V5	I	+5V supply voltage to support power to the CPU core.
V3	I	+3.3V supply to support power to the CPU I/O. These pins are connected directly to the VI/O pins so the 3.3V supply can be routed through the module header.
PWRGD (Power Good) for Pentium Open collector TTL output	0	If PWRGD = HIGH, the output voltage is within specifications. If PWRGD = LOW, the output voltage not within ±10% of nominal. The PWRGD output will change to the proper state within 5ms of the output coming into or going out of its specified range.
VCORE	0	Processor core VCC.
VI/O	0	CPU I/O VCC. These pins are connected to the +3.3V input pins.
GND	I,O	Ground Reference.

Electrical Specifications

(VIN = +5V, TA = 25°C unless otherwise specified.)

Parameter	Test Conditions	Min.	Тур.	Max.	Units
Input Specifications	•	'			•
Controller supply voltage, VIN		4.75	5	5.25	V
Output Specifications (RCB002-8)	•	'			•
Output Voltage, VCORE			2.8		V
			2.9		V
Output Current, ICORE			6	8.0	Α
Load Transient ¹	ICORE = 0.5A to 7.5A, 20A/μs		±40	±100	mV
Load Regulation	ICORE = 0.5A to 7.5A		±0.8		%
Efficiency	ICORE = 6A		83		%
Short Circuit Protection			10		А
Output Specifications (RCB002-10)	•	'			•
Output Voltage, VCORE			3.2		V
Output Current, ICORE			8.5	10	А
Load Transient	ICORE = 0.5A to 10A, 20A/μs		±50	±100	mV
Load Regulation	ICORE = 0.5A to 10A		±1.0		%
Efficiency	ICORE = 8A		80		%
Short Circuit Protection			13		Α
General Specifications	•	•	•	•	
Set Point Accuracy ²	ICORE = 3A		±1.0		%
Line Regulation	VIN = 5.0V ± 0.25V		±0.1		%
Output Temperature Drift	T _A = 0 to 60°C		20		ppm/°C
Switching Frequency			300		kHz
Cumulative Accuracy ³			±50	±100	mV

Notes:

- 1. Refer to Intel's AP-580 for bulk capacitance decoupling recommendations. Four 100 μ F Tantalum capacitors with 25m Ω ESR are recommended for optimum transient response.
- 2. Set Point Accurcy is defined as the static accuracy of the output voltage at 3A and $T_A = 25$ °C.
- 3. Cumulative Accuracy includes Set Point Accuracy, Output Temperature Drift, Line and Load Regulation, and Output Ripple/Noise.

PRODUCT SPECIFICATION RCB002

Ordering Information

Part Number	Output Current	Output Voltage	Input
RCB002-8/2.8	8A	2.8V	5V DC
RCB002-8/2.9	8A	2.9V	5V DC
RCB002-10	10A	3.2V	5V DC

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com